गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

$1,-a, a^{2},-a^{3}, \ldots n$ पदों तक (यदि $a \neq-1)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given $G.P.$ is $1,-a, a^{2},-a^{3} \ldots \ldots$

Here, first term $=a_{1}=1$

Common ratio $=r=-a$

$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$\therefore S_{n}=\frac{1\left[1-(-a)^{n}\right]}{1-(-a)}=\frac{\left[1-(-a)^{n}\right]}{1+a}$

Similar Questions

यदि किसी गुणोत्तर श्रेणी के पदों का योग $364$, सार्वानुपात $3$ तथा अंतिम पद $243$ है, तो श्रेणी में पदों की संख्या होगी

निम्नाकित चित्र में दर्शाए अनुसार, मान लें कि $S_1$ ऐसे वर्गों के क्षेत्रफल का योग है जिसकी भुजाएँ नियामक अक्षों के समान्तर है. मान लें कि नत $(slanted)$ बर्गों के क्षेत्रफलों का योग $S_2$ है. तब $S_1 / S_2$ का मान होगा

  • [KVPY 2016]

धन पदों की एक अनन्त श्रेणी का योग $3$ है तथा इसके पदों के घनों (cubes) का योग $\frac{27}{19}$ है, तो इस श्रेणी का सार्व अनुपात है

  • [JEE MAIN 2019]

एक गुणोत्तर श्रेणी में पदों की संख्या सम है। यदि सभी पदों का योगफल विषम स्थान वाले पदों के योगफल का $5$ गुना है, तब सार्व-अनुपात होगा

गुणोत्तर श्रेणी $5, - \frac{5}{2},\frac{5}{4}, - \frac{5}{8},...$ का $n$ वाँ पद$\frac{5}{{1024}}$ हो, तो $n$ का मान होगा